
A Case Study on Designing Interfaces for Multiple Users in Developing Regions

Kurtis Heimerl
kheimerl@cs.berkeley.edu

Janani Vasudev
janani@ischool.berkeley.edu

Kelly G. Buchanan
kellybuchanan@berkeley.edu

Tapan Parikh
parikh@ischool.berkeley.edu

Eric Brewer
brewer@cs.berkeley.edu

University of California, Berkeley
Berkeley, CA 94720-1776

ABSTRACT
Computer assisted learning (or E-learning) is used broadly in the
developed world. However, comparable technologies are only
recently beginning to be used in rural and developing regions. In
these environments, obstacles to the successful deployment of edu-
cational software include a lack of basic infrastructure, low student
attendance, necessary sharing of resources, and the participants’—
both teachers and students—unfamiliarity with communications
technology. To illustrate these issues in detail, we present a design
study for Metamouse, a system for sharing single user software on
a single computer with multiple mice.

We designed Metamouse during a one and a half month long
study in low-income primary schools in Bangalore, India. We
iterated through two primary usage paradigms, competitive and
collaborative, working with grade four and five students. In these
populations, we found that students had widely varying mouse
skills, and that even amongst competent users, interface confusion
presented significant barriers. Given this, interface tasks that are
known to have a cost in usability, such as mode switching or
complicated interaction models, had a severe impact on students’
ability to use the technology. We discuss interface issues that result
from sharing practices that are the norm in these regions. We also
discuss issues that generalize across educational application design
in the developing world.

1. INTRODUCTION
Computer assisted learning in the developing world has been the

focus of a great deal of research. It has the potential to mitigate
a number of common concerns: low teacher attendance, limited
literacy, high student absenteeism, as well as many others. Much
formal work on interfaces for children in these areas focuses on
game content [15, 30], rather than on appropriate basic interfaces
for users in the developing world. Though content research is quite
valuable, we believe that basic interface design has been neglected
and is an important area for work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM DEV’10, December 17–18, 2010, London, United Kingdom.
Copyright 2010 ACM 978-1-4503-0473-3-10/12 ...$10.00.

We advocate an approach that acknowledges the fact that educa-
tional games in the developing world are commonlyshared rather
than played individually. Single Display Groupware (SDG) [29]
allows for multiple users to share a single application, monitor, and
computer using multiple input devices. SDG interfaces have a long
history in the developed world, traditionally focused on business
and education applications. Recently, researchers brought this tech-
nology to students in the developing world and showed that these
techniques are intuitive and usable [24], increase learning [23], and
help focus and motivate users [28].

Despite these encouraging results, it is clear that designing
shared applications is difficult. Multiple input devices have actually
reduced learning in some populations [23], and our own experi-
ences have shown the many limitations of this technique.

We conducted a design study ofMetamouse, a system for
sharing existing educational content using multiple mice. Meta-
mouse allows for the sharing of any single-player educational
game by multiple users. We evaluated a number of possible
interaction paradigms, competitive [24] as well as different voting
schemes [10] in a month and a half long study in two low-income
schools in Bangalore, India. To conduct the design study, we
partnered with the Azim Premji Foundation [6], a large non-profit
focused on developing educational games as well as supporting
computer-based education in India.

As we iterated our design, we observed a number of lessons
relevant to the design of educational interfaces (multi-user and
not) for the developing world. Firstly, we learned that application
designers need to account for the high variability in children’s
mouse skills. Children of all competence levels participated,
and designers must account for this fact. Secondly, we found
that competitive models of interaction are difficult to implement
in a way that supports collaboration and learning. Thirdly, we
observed that complicated models of interaction (such as our
original metacursor design [8]) were difficult for students and often
limited learning. Lastly, we found a number of common single-
player design idioms that fail miserably when shared among users,
including timed games, multi-modal interactions, and inflexible
navigation.

The rest of this paper is organized as follows: We begin
by discussing previous work that related to this project. We
follow with the initial goals for the project. We then discuss our
partners, the Azim Premji Foundation, and the low-income Indian
government schools for which Metamouse is designed. We then
describe the format of the design study itself. We cover the design
iterations next, from initial prototype to to finished system. Within
each iteration we note the novice mouse user errors, user interface

failings, and design considerations relevant to the iteration. We
then summarize our findings and discuss the design implications
for both single and multiple mouse environments.

2. RELATED WORK
As stated earlier, a great deal of work on computer-based

education for the developing world focuses on educational content.
One example is MILLEE [15, 30], which uses cell phones to
provide English language learning software. Other work focuses on
the environment created by these computers [21], and its impact on
education. Our work is highly focused on the problem of creating
appropriate interfaces for these regions, rather than these broader
topics.

Single-display groupware (SDG) is a term for collaborative,
multi-user applications using one computer and display [29]. There
have been several SDG applications for education [25, 31, 32]
as well as work focused on designing interfaces for multiple
children [28]. However, these works do not take into account the
unique difficulties of computing in the developing world.

There is also a wide variety of work on developing specialized
interfaces for children. Many previous works have evaluated chil-
dren’s mouse usage, discovering a number of problems, including
trouble controlling drag and drop [3], differentiating left and right
mouse buttons [12], and inaccurate clicking [13]. Many of these
issues appear to improve sometime by first grade in the developed
world [4, 12, 14], though whether this improvement is due to motor
development or practice is not clear [11]. We encountered these
mouse skills issues, even when dealing with students well into
adolescence.

Recently, there has been significant interest in using these SDG
techniques in the developing world [22]. Preliminary results
indicate that, with appropriate content, sharing multiple mice can
be intuitive and usable [24] and increase learning gains [23].
There has been work on the specifics of designing interfaces for
these technologies, including scaling to over thirty users [19],
reducing dominant behavior [18] and providing multiple mouse
text entry [1]. Our work supports their findings, to the degree
that they are applicable with the constraint of supporting legacy
applications. We continue this line of work by providing design
recommendations, design experiences, and a deeper analysis of the
challenges inherent in designing multi-user software in developing
regions.

This particular paper describes the design portion of a larger
study as well as recommendations for the design of single- and
multi-user educational games. Earlier works [8, 9] describe the first
designs of the system, prior to this design study. Our immediately
following work [10] describes a quantitative evaluation of our final
Metamouse design, including an analysis of learning benefits.

A number of our design choices have been seen before. albeit in
different contexts. The consensus “location-voting” scheme is very
similar to “click-voting” schemes seen in prior SDG literature [5,
23] but requires no access to source code to implement, making
it more feasible to support legacy applications in developing
regions. Our initial “mouse-averaging” technique, as seen in
the “metacursor” feature of the original design [8, 9], is highly
informed by prior work [2, 20]. However, we found this model to
be unfeasible for children with few mouse skills. See Section 6.3
for further discussion.

3. INITIAL GOALS
Before conducting our contextual inquiry or design study, we

had a number of high-level goals for this project. These goals are

detailed in this section.

3.1 Backward Compatibility
Working with existing software is a primary goal of the Meta-

mouse project. There are thousands of existing educational games,
crossing language barriers and integrating into existing lesson
plans. For this reason, any interaction paradigms we develop must
allow for the sharing of existing educational content.

3.2 Encourage Collaboration and Engagement
Collaboration has been shown to improve learning outcomes [16,

27]. Peer-to-peer interaction is even more important in impover-
ished schools in the developing world, where teachers are often
unfamiliar with computers or content, if they teach at all. To
this end, we hope to provide interfaces that encourage group
interactions.

4. EDUCATIONAL CONTEXT
Working with the Azim Premji Foundation (APF) [6] educa-

tional technology initiative, we observed students in six schools in
and around Bangalore, India to motivate the design for Metamouse.
In this section, we detail APF’s initiatives, as well as the computing
context in the schools we visited.

4.1 Azim Premji Foundation
The Azim Premji Foundation is the largest developer of edu-

cational software in India. They have developed over 120 games
under various subject categories such as English, Math, Science,
and Hindi, serving grades one through eight in six different Indian
languages. The foundation also provides computer hardware to
the schools, including battery backup for the entire computer lab.
These computer labs consist of between four and ten Windows
computers, each loaded with APF content. These computers are
generally not networked together, nor connected to the Internet,
though we did see one school that had installed a local area
network. Our primary goal was to allow multiple users to share
all of Azim Premji’s existing educational content.

4.2 Schools
All of the schools we visited were government-run primary

schools. Government schools are free and generally cater to
students of low socioeconomic status. The schools ranged in
size from approximately one hundred children to well over four
hundred. All of the schools taught grades one through seven, with
some grades exceeding eighty students. Computing infrastructure
(four to eight computers) was supplied to all of the schools by APF,
allowing each to operate a full educational computer lab.

A number of smaller “feeder” schools exist which teach only
grades one through five. Few of these have computer equipment.
Upon finishing grade five, the students transfer to one of the larger
primary schools, which is much more likely to have a computer lab.
For this reason, students coming from “feeder” schools are likely
to be significantly behind their peers in terms of computer skills.

In the six schools we visited, we observed many different models
for sharing computing resources. Some variations include how
students were paired, what role teachers play, and how students
shared games. We describe these observations below.

4.2.1 Student Pairing
Students usually sat in groups of three to five per computer.

We observed various ways in which students were grouped. Most
schools used the class roll to organize the groups. These rolls were
generally sorted alphabetically, and sometimes also split by gender,

leading to the formation of single-gender groups. In some schools,
there was a concerted effort to pair weaker students with stronger
ones. Another method we observed was self-grouping, where the
teacher did not explicitly organize the children, and they chose their
own groups.

4.2.2 Teaching Structure
There were three primary models for computer instruction we

found in our initial investigations. In the most common model,
a dedicated computer teacher managed the computer classes. This
teacher ran only the computer classroom, taking children from their
primary teacher for a period of time. The instructor also assisted
the other teachers in computer tasks, such as developing lesson
plans and computer grading. Nevertheless, there remains some
disconnect, and the computer class often does not directly support
what is being taught in more traditional classes.

Alternatively, the primary teachers may instruct the computer
class as well as their other classes. This allows the teacher to
tightly integrate the computer learning with the rest of the lessons.
However, the teacher may not be computer literate, limiting the
effectiveness of the computer class. Also, class sizes often dwarf
the number of computers, leading the teacher to split the class
during computer hours. In this case, the remaining students would
go to the library or take a recess.

Finally, primary teachers may split the class and send half to the
computer room with no instructor. We were unable to observe this,
as it was practiced at just one school where the computer lab was
not operational during our visit.

4.2.3 Sharing Models
The schools had various ways to organize the student groups.

APF suggests that the most technically skilled student take on
a dominant role in group dynamics. They are designated the
“monitor” and their job is to ensure the mouse is switched between
every game. This technique is uncommon in practice; we saw it
only in one of the six schools visited.

The other schools used a less strict sharing model; children
are encouraged to share, without this explicit enforcement. If a
child feels like there isn’t enough sharing, they can voice their
complaint to the instructor (if there is one) who will then remedy
the situation. This worked if the students were confident enough
to voice a complaint. Unfortunately, inexperienced students often
lack this confidence.

5. STUDY DESIGN
We selected two schools for a participant observation and design

study. To ensure that our designs were applicable to the wide
educational context, we selected two schools that were markedly
different. School A sorted the children by gender and alphabetical
order. This school also had a dedicated computer instructor. School
B sorted the kids alphabetically with no gender separation and
had no instructor. The children either managed themselves in the
classroom (the common case) or were led by their primary teacher.
Both schools used only informal structures to enforce sharing; we
had not discovered the “monitor” model (See section 4.2.3) at
design time.

Our team consisted of three researchers and one assistant. The
researchers were fluent in English and Tamil, both spoken by
children on occasion. The assistant was a native speaker of
Kannada and translated for the researchers when the children spoke
in a language that was not understood.

The design study itself consisted of student group interviews.
We selected three children from either grade 5, 6 or 7 (with all

students from the same grade) and had them play an existing
APF educational game usingMetamouse. We assumed they
had experience with single-mouse before, as their computer labs
were either functional or had recently (within the month) been
functional. The children were asked to play two games for about
twenty minutes using one of the interaction models described
below. The models were counterbalanced to limit any learning bias.
During this time, our assistant translated the student discussion
while the researchers observed their interactions. We followed
this up with a brief focus group interview, after which the students
were allowed to play a different game with an alternate interaction
model. Upon completion, we once again conducted a focus group
interview, where we asked the students to compare the two models
and their experiences with single mouse sharing.

In addition to this exercise, we conducted contextual inquiries
and observations during normal lab hours. The students spent their
lab hours playing APF educational games according to an estab-
lished lesson plan. They shared with 3-4 kids per computer. Upon
detecting particularly interesting behavior from an observation, we
would bring that group in for testing and interviewing. These
observations happened only at school A, as school B’s computer
lab was under renovation.

The students were selected in differing ways at the different
schools. In school A, we selected randomly from pre-formed
groups. This allowed us to examine Metamouse in existing social
structures. At school B, we allowed the teacher to select the
students. This led to groups of students of comparable skill level,
as the teachers tended to pull their brightest students first.

6. METAMOUSE
In this section, we describe the design iterations of Metamouse.

Many of the incremental design changes were actually done in
parallel, so the iterations below are not strictly chronological, but
instead primarily conceptual.

6.1 Initial Designs
At the beginning of the design study, we implemented two

conceptual models of sharing we hoped to evaluate. The first is a
competitive model, where the students would compete to be the one
to successfully navigate the game. The second is acollaborative
model where the students were required to work together to make
progress.

6.1.1 Competitive
The competitive model is conceptually quite simple, and has

been implemented in a number of multi-user games [23]. In this
model, each user is given their own mouse cursor and operates
completely independently; one user could play the entire game by
herself without any involvement from the other users.

Of course, the other users would probably not appreciate that.
For this reason, we expected to see competitive behavior from the
students, competing to be the one to select the correct answer and
make progress in the game. This competition would hopefully spur
discussion and collaboration, as users attempt to optimize their own
strategies.

This model is one of the first offered by most multiple input de-
vice software developers. It is simple to understand and implement,
and users tend to understand it quickly.

6.1.2 Collaborative
The basic premise of our collaborative model is that we wish to

encourage the users to work together to progress through the game.
This should engender more user discussion and collaboration,

Figure 1. The original version of Metamouse. The user
cursors are blue, black and white and the central cursor is
the “metacursor” and it is green, signaling agreement.

which have been shown to improve learning outcomes [16, 27].
To accomplish this, we provide each user with their own cursor, as
in other models, but also draw ametacursor. This metacursor is
controlled by all users equally; it is placed at the average location
of all user cursors. All interactions with the game happen through
this single shared cursor; the users use it to click on answers, select
text boxes, and skip content.

However, while this resolves one issue, that of mapping many
mice down to the one cursor an application expects, it introduces
another. If the user cursors are far apart, the metacursor is near
none of them; it is somewhere in between. This means that it may
be on buttons or content, or may be at some nearly random location
on the screen. For this reason, we drop all clicks unless the mice
are near each other. Lastly, we signal the agreement with color
changes; the metacursor is green when in agreement and red when
not. Figure 1 demonstrates this early version of Metamouse.

This system allows for group control of an existing application.
It requires all users to agree on an answer to make progress. Our
initial tests in India found it to be intuitive and usable, and we hoped
to see gains in collaboration and discussion in our larger design
study.

See our earlier work [8, 9] for a deeper analysis and discussion
of this model.

6.2 First Iteration: Failure of the Competitive
Model

As we began testing the two models, it became abundantly clear
that the competitive model is simply incorrect given our constraints.
There are two primary reasons for this. Firstly, the existing content
doesn’t adequately support competitive behavior, leading to “race-
clicking”. Secondly, the competitive model seems to greatly reduce
the amount of discussion and collaboration.

6.2.1 Race-Clicking
Firstly, the students were competing tocomplete the game,

rather thanunderstand the content. This had been seen in prior
work [24], where children would compete to click first (called
“race-clicking”). This was exacerbated by our requirement to
support existing games. These applications often had games that
would progress when the student provided any answer, even if the
answer wasn’t correct. This was a common model, seemingly
simulating a test. However, here it meant that children would
compete to click onany answer first, completely disregarding the
content.

Though there may be solutions to this “race-clicking” phe-
nomenon, but they required very specific controls in the class-

room. For instance, in [26] it was found that seating children of
comparable mouse skills together improved the effectiveness of
competitive models. This is infeasible, as the high variability in
teacher quality in these low-income schools means that we cannot
expect any consistent grouping from the teachers.

We wish to note that competition itself is not the problem,
but rather competitive sharing. In [26] they discuss having the
groups compete in a tournament-like system. This is potentially
compatible with Metamouse–each group can work cooperatively
and compete together against other groups.

6.2.2 Discussion and Collaboration
The competitive model seemed to heavily reduce the amount of

discussion between the students. Students were more focused on
the competition than on their fellow students. Though this can be
valuable given the right underlying interface (for instance if each
student was required to answer a question) we could not devise a
way to encourage discussion given the requirement of supporting a
wide variety of existing games.

The key to understanding why collaboration decreased is to note
how sharing of physical objects is different from sharing media.
With the physical object (sharing the single mouse), the students
have a clear inequality. They view it as unfair if just one user
dominates this object. If a student is not allowed to use the mouse,
it is not their fault. However, if we introduce multiple mice,
this dynamic changes; every student now has equal access and
opportunity with the software. This equality allows students to
compete in a much more selfish way. If the other students cannot
keep up, it is as one student told us, “their fault”. This problem is
exacerbated by the high variance in mouse skills among users.

This shift immediately reduces the amount of collaboration
among the users. Comparable behavior has been seen in a number
of other works [23]. Though literature exists on how to mitigate this
behavior, it is extremely difficult to do in an application-agnostic
way. For instance, in [17] students are directed to explain to
partners when they click on an answer. In Metamouse we are
unable to determine when a user has clicked on an answer. We
know only that they clicked, and thus cannot use similar techniques.

For these reasons, we decided that the competitive model could
not be modified to appropriately support sharing existing single-
player educational games.

6.3 Second Iteration: Removal of the
Metacursor

The final design of Metamouse no longer features the metacur-
sor. While this model was intuitive for proficient mouse users in the
United States, it did not translate well to our target users. In this
section we discuss the findings that led us to this decision. Though
a simple idea for people with extensive mouse skills, the metacursor
was difficult for unskilled users and encouraged “gaming” of the
system.

6.3.1 Original Metacursor Design
The original Metamouse collaborative design consisted of color-

coded user cursors and a special metacursor which was placed
at the average location of the user cursors. All user clicks were
directed through this special cursor, rather than their own, when
the user mice were in within some distance tolerance [8] of each
other. This metaphor was too complex for most of the students we
worked with. Even after an explanation of how Metamouse works,
they struggled to focus on more than one cursor on the screen and
missed agreement cues.

An unforeseen complication arose from a group where only one

Figure 2. The Metamouse system using no metacursor. The
mice are in agreement, as signaled by their green outline.

student moved her mouse at a time. In this case, the metacursor
seems to be a normal cursor, moving in the same direction as her
personal cursor, but at a slower speed. This was very confusing,
as the systemseemed to map directly to traditional single-mouse
usage. Of course, the user could not click without agreement.

6.3.2 Metacursor Upon Agreement
We noted that the metacursor was of limited value when the

users were not in agreement. The students couldn’t click through
it, so during this time it merely served to add cursor confusion. In
line with this reasoning, we removed the metacursor from general
game-play and only showed it when the users achieved proximity
agreement.

This allowed users to recognize their own cursors, but without
the gestalt experience of real-time location averaging, students did
not think of the metacursor as a cursor. Instead, they viewed it
as merely an indicator of agreement. Students would then try to
click through their own cursors rather than the metacursor. This
difference was sometimes irrelevant; if a button was large, most
students did not realize their error. However, some games are
designed with very small targets—on the order of 10px—and many
students lacked the precision mouse control to click these targets,
even without the additional clutter of the metacursor.

6.3.3 Removing the Metacursor
We next noted that, if the users were just using the metacursor for

signaling, a more direct signaling method might be more effective.
Towards this end, we removed the metacursor entirely and designed
new user cursors with a thick green outline that appeared when the
cursors were in agreement. This improved student performance,
but revealed that even without the metacursor to add confusion,
many of the students did not grasp that clicks originate at the
“point” of the cursor. A student might have their entire cursor
on a button, except for the tip, while other cursors in proximity
agreement might be off of the button entirely. In this case, repeated
clicking and slight mouse movements would eventually lead to one
student successfully clicking the button. This gives the impression
of a non-deterministic system where some clicks mysteriously lead
to actions and others do not, a perception which will further hinder
the development of expert mouse skills. Figure 2 demonstrates the
Metamouse system with no metacursor.

We ultimately chose to keep the standard cursor shape in the

Figure 3. The contextual menu brought up when a student
accidentally right clicks in an APF game

hopes that students will eventually pick up on the fact that clicks
originate at the point of the arrow. This was one of many
design decisions where we chose to support industry standard UI
conventions over what might be strictly easiest for our users to
understand.

6.4 Third Iteration: Dealing with
Low Computer Literacy

There were a wide variety of issues we discovered when dealing
with non-proficient users. These problems include right clicks,
machine-gun clicking, and accidental drag-and-drop. In this
section we will primarily discuss our solutions to these common
user behaviors, but we also discuss the design challenges in
implementing collaborative drag and drop—a task which exposed
many user behavior issues.

6.4.1 Right Clicks
Differentiating between the various buttons on a PC mouse is a

common novice error. While designers in the developed world may
expect children to be familiar with the distinction between buttons
by early grammar school age [12], right clicks were quite common
amongst our students in grades five through seven. In fact, we saw
a few kids clicking on the rotating center button instead of either.

In APF’s educational flash games, right clicking leads to a
contextual menu that did not make sense to the children and
blocked content. Figure 3 demonstrates this menu. Once a
contextual menu has been brought up, it freezes the game until you
left click away from the menu. In Metamouse, students had the
additional complication of requiring agreement before users were
able to left-click. Upon accidentally right clicking, students were
often unable to sort this problem out and had to call to the instructor.

To remedy this, Metamouse intercepts and ignores all right
clicks. This is a configurable option, as it is possible that other
games may make use of the right click.

6.4.2 Multiple Simultaneous Clicks
When three kids are sharing three mice, it is quite common that

all three will click on a button at approximately the same time.
Though this is often not a problem (most button functions are
idempotent) there are occasions where it is crippling. One example
are “skip” buttons which allow you to skip content. Three clicks
skips three pieces of content, rather than one, as desired. As another
example, some games immediately place new questions where old
ones were, and the following clicks accidentally provide incorrect
answers.

To solve this, we created a click timer which drops all clicks
following the first click for some amount of time. This lets all
kids click on the content, while the application receives just one
click event. This remedies the problem in most cases. However, if
the initial clicker is off the content (as in the small button example

earlier) the users whowere on the content would be prevented from
clicking on the correct target. To limit this problem, we now only
drop each user’s first click. This allows them to correct an error if
by clicking a target multiple times. Though we still occasionally
see unintentional double clicks, this has reduced the problem to a
manageable level.

6.4.3 Mouse Drifting and Long Clicks
Students with limited mouse skills had a tendency to “drift” with

their cursors. When selecting a target, or trying to stay in an area,
the student would fail to hold the mouse steady. Drifting appeared
to be primarily the result of low motor control or limited familiarity
with mice.

These students would also hold clicks (the mouse trigger) down
for longer than is necessary. Long clicks sometimes seemed to
be purposeful, as if the user intended to nudge the computer more
forcefully in hopes of a more successful outcome. Longer clicks,
too, may be explained by a lack of fine motor skill required to click
rapidly.

Long clicks in combination with drifting or nudging sometimes
resulted in accidental dragging. Students would hold the click
longer than necessary and then drift away from the initial target,
instigating a drag from the perspective of the system. This has
a negative impact on collaboration, as well as game-play, so we
added a number of heuristics that would lessen the impact of
accidental dragging. We noted that while standard user clicks were
often of a longer duration than those of an expert user, students’
clicks were longer still when they were attempting to drag or pick
up an item. We were able to raise the minimum threshold of
time between down-click and up-click to initiate a drag, and we
found no adverse effects in usage. Purposeful drags also moved a
much larger average distance than accidental ones. We also raised
the distance threshold for initiating a drag. These two changes
substantially decreased the dragging associated with long clicks
and drifting.

6.4.4 Mitigating Accidental Drag-and-drop
In our original drag-and-drop model, the system cursor was

always assigned to the metacursor, meaning that dragged items
were not “owned” by any individual. After we removed the
metacursor, we assigned dragged items to the user cursor who
first initiated the down-click. Alternative assignments (such as
the metacursor model) had proven too confusing, but our solution
requires that the original user who instantiated the drag must also
end it. Even with the heuristics to mediate long clicks and drifting,
students still sometimes initiated drags accidentally, and then found
that they could not drop the item without achieving agreement
first. Essentially, users could accidentally pick an item but had to
coordinate to put it back down. This led to an untenable situation,
as unskilled users were more likely to freeze or become flustered
when unexpected actions occurred.

We certainly could have diffused this situation entirely by not
requiring agreement to drop an item, and simply letting the user
who initiated the drag complete it on her own. However, in games
that use drag and drop as a primary decision making action, it is
often the dropping portion where the actual decision is made. We
felt that not requiring collaboration at this point would undermine
the collaborative intent of Metamouse.

Instead, we chose to add a feature which reduces the conflict of
accidental drags. We were able to do this by taking advantage of
some regularities in drag and drop game-play to reinforce desirable
user behavior. As mentioned before, most successful drags are over
a considerable distance, and last for much longer than any clicks.

Additionally, when we set the heuristics such that being below
either threshold negated a drag (versus requiring both) students
began “putting items back” after dragging accidentally. They
would recognize that the item was stuck to their cursor, and return
it to the location it was originally. They were able to accomplish
this even after large spans of time, and without agreement. Moving
the item to a new location still required agreement. This proved to
be very helpful in diffusing the frustration of failed collaborative
dragging attempts.

6.4.5 Complications of click-move-click
Users frequently made incomplete dragging gestures–clicking

and dragging to pick up an item, and letting it go as soon as it
has become associated with the cursor. This partial dragging may
be caused by fine motor control issues. However, this behavior also
seems to be related to ignorance of the standard dragging model
and possibly a learned behavior. Some of the applications that
students used featured a “click-move-click” method that attached
an item to your cursor without requiring the user to hold down a
mouse button. This procedure is often used in education games
with the assumption that students will make fewer errors than they
will with drag and drop. Evidence does not seem to support this
hypothesis [3]. Given its ubiquity in the games we sampled, we feel
that the “click-move-click” procedure may have influenced some
students to expect that they do not need to hold down the mouse
button while moving items.

In order to require collaboration for drag and drop options,
Metamouse must require agreement for dropping in addition to
picking up. Unfortunately this leads to perpetuating non-standard
user behavior with regards to partial drags. Metamouse does
not transmit an up-click to the system if it takes place out of
agreement, so if a user begins a drag and up-clicks before achieving
agreement, the item will remain attached to the cursor, as in “click-
move-click”. The user must then click again with agreement and
the resulting up-click will end the drag. We witnessed students
clicking needlessly at the end of drags, even if they successfully
dragged the item and released with agreement. It is unclear if
Metamouse created this behavior or if it is a permutation of the
student confusion around “click-move-click”.

7. RESULTS AND DISCUSSION
In this section, we first discuss open issues, related specifically

to collaborative systems with multiple mice, that we feel were not
resolved by our design process. We then follow with observations
and conclusions on how to design shared educational games, for
use with one or multiple mice.

7.1 Open Issues

7.1.1 Dragging Errors
As discussed in Section 6.4, we encountered several behavioral

artifacts surrounding drag and drop. Users who picked up an item
in a game may release their click before reaching agreement. As
our design requires that the users agree before dropping an item,
we ignore that up-click, leading to a situation where the user has
to click down and then up (while in agreement) to release an item.
This is not a user behavior we feel contributes positively to learning
mouse control and standard application behavior.

It is unclear to us how to resolve the confusion around drag and
drop. We observed students extraneously clicking when dropping
an item they had successfully dragged, and this seems to be clearly
related to our flawed design. Acquired behaviors like this one will
not map well to a single-mouse model. Within the intended context

of Metamouse, these behaviors may be preferable to dropping the
item without agreement, leading to less discussion, or dropping the
item when agreement is reached but without any direct user action.
In this case, users would accidentally drop whenever their cursors
hovered too close together.

This issue appears to be unresolvable given our constraint of
supporting legacy applications. We hope that students will be
able to adapt to the two environments. However, this behavioral
eccentricity is an excellent example of the interface problems
designers must consider in designing user interfaces for children
in developing regions.

7.1.2 Filtering extraneous clicks
Metamouse drops all right clicks and filters out repeated clicking

because our user population is using only simple single-click flash
games. This property is configurable. If we were sharing content
that required the double or right clicks, this feature would be
disabled.

Much of the benefit of these clicking heuristics are seen in
the initial stages of deploying Metamouse, when students first
encounter computers, mice, and Metamouse, and are struggling
through these initial learning curves. However, given the con-
sistently low level of mouse proficiency we encountered, it is
likely that most new deployments of educational software in the
developing world will need to take similar precautions to make
widespread adoption feasible. We are currently undertaking a
longitudinal study of Metamouse. It is possible that, in the long run,
these heuristics may become unnecessary or even damaging. We do
not expect any of our current heuristics to be damaging, given that
we have observed students using Metamouse over several weeks.
However, overly aggressive compensation for poor mouse skills
could clearly hamper the acquisition of traditional mouse skills.
This remains an important question to us, and one we continue to
focus on.

7.2 Designing for Sharing Using Multiple Mice
In this section, we describe some simple design lessons for

producing multi-user educational games.

7.2.1 Employ Competition Wisely
With the constraint of working with existing games, race-

clicking [23] crippled our design. Games often moved forward
even on wrong answers and did not provide explanations when
answers were correct. Because of this, one aggressive user can
dominate the gameplay even without superior knowledge of the
material. Correctly incentivizing users tolearn rather than just
play is very difficult. Designers of competitive games should
be careful to ensure that their interfaces encourage learning and
positive discussion amongst users.

7.2.2 Use Simple Models of Interaction
The original metacursor design [8] is an example of a complex

usage model which was ultimately abandoned. However, we wit-
nessed students struggling with simpler, more standard interactions
such as drag and drop, differentiating system cursors, and clicking
through the point (rather than the center) of the cursor. While
a clear understanding of these user interface elements is part of
baseline computer literacy in the developed world, young computer
learners in developing countries have less experience with user
interface norms, and naturally may take longer to appreciate their
subtleties. Designers should strive to use a small set of simple
interaction paradigms (point and click, drag and drop), even at the
expense of content.

In addition to the wide disparities in computer literacy amongst
students, we have also found that instructors in computing classes
sometimes have little practical computer experience. Even in
schools with a designated computer lab instructor, the instructor’s
computer literacy is often not what technology designers might
consider standard. Because of this and general under-staffing
problems, it is likely that students will not always have teacher
intervention to fall back on when they struggle. This set of
constraints necessitates simple designs and even simpler error
messages. Designers should assume their users are “on an island”
with the software, operating with absolutely no external feedback
or instruction.

7.2.3 Work With Any Pedagogy
Some education researchers [26] have suggested instituting col-

laboration policies in the classroom. While this can certainly be
helpful, our experiences have shown that such policies can not be
reliably implemented in the field. APF, the Indian educational
organization we worked with, had many recommendations for
teachers to best organize their students to maximize learning and
engagement. However, outside designers cannot consider all of the
factors in the basic organization of the teacher’s day, and teachers
often disregard their suggestions. Only one of the five schools
we looked at while planning this study used APF’s suggested
“monitor” model, where one strong student in the group enforces
sharing. Designers should not assume that any complicated sharing
strategies will be enforced. Students will steal mice, sit with
peers of varying backgrounds, and ignore on-screen instructions.
Educational software must work when dropped into any classroom,
regardless of the class structure.

7.2.4 Impart Transferable Mouse Skills
Some of the most generalizable findings from the design study

include the unexpectedly thorough, widespread issues with mouse
proficiency. In the two schools that participated in the user study,
one quarter of the students (9 out of 36 grade 5 students) [10]
did not know what to do with a mouse when seated alone at a
computer. Computing skills are highly valued for the employment
possibilities they can create [21]. Learning to use a mouse
is a fundamental requirement for computer literacy. However,
most games are focused on teaching a lesson, assuming mouse
competence from the users. We believe that designers should strive
to teach not just content, but also basic mouse skills that are of use
outside of just their specific application.

7.2.5 Impart Mouse Skills on All Users
Many of the most proficient users in our study were unaware of

the subtleties of mouse actions in a traditional single mouse setup.
This was in schools where computer learning wasrequired and
students had been playing games foryears. While most studies
examining mouse proficiency in children in developed areas see
behavioral issues improve or resolved between the ages of four and
five [4, 12, 14], our students still seemed to be struggling at ages 12
to 14.

The widespread mouse proficiency issues observed in our study
clearly indicate that single mouse sharing is not sufficient to
establish computer literacy with any kind of equanimity. Habitual
sharing of computers can serve to broaden the gap in mouse skills,
rather than reduce it. Even with multiple mice, students from feeder
schools who have no computer experience may be shunted into the
role of the slow user, and thus may not have many opportunities
to improve their mouse skills. To mitigate this, designers should
provide interfaces that allow for participation of all users, all of the

time. Students can learn basic mouse skills by simply manipulating
the mouse, irrespective of the actions taken in the game. Our own
results support this [10], with students who were not required to
participate still improving mouse proficiency.

7.3 Designing Single-Player Games
for Sharing

Many of our findings inform general game design in developing
regions. The user needs in these areas differ from those of the
developed world in many ways. In this section, we focus on just
one: omnipresent sharing.

Few designers of single player applications take multi-user
sharing into mind when designing their games. In games intended
for use in low-income, developing regions, sharing is by far the
most common method of use. Clearly, designing multi-player
games for multiple mice is an excellent option to pursue, but
there is considerable value in improving the design of single-player
games; making them more sharable with just a single mouse. We
suggest three basic ideas that allow for better sharing of single-
player games.

7.3.1 Avoid Timers
Quite a few educational games have timed sections: areas where

the user has to complete a task within a certain amount of time.
This has a basis in traditional educational pedagogy; educators
commonly wish to prevent students from looking up answers or
train students to respond quickly. However, when groups of people
are involved, tasks simply take longer. We witnessed groups of
students continually disappointed after performing admirably on a
task only to “lose” when an inappropriately brief timer went off. In
many cases, poor mouse skills played into these “losses” as well.

Additionally, timed games create negative group interactions.
Students are more tense and less gracious of one another. When
a strong user realizes that the game is timed, they will often assume
complete control of the game, providing less proficient users with
no chance to participate. Even if students continue trying to
collaborate, discussion nearly ceases, which is an unfortunate loss
of a good avenue for learning [33].

Designers should avoid timers in general. There is no way to
know how many users are in front of their game, and thus the
appropriate timer length.

7.3.2 Mouse-Centric Designs
Using the keyboard as a primary controller of game-play was

common in the early days of computer gaming. While arrows
may occasionally be an appropriate control for a game, many
modern designs use mouse gestures or on-screen arrows to achieve
an equally intuitive interface. We found that most of the time
the keyboard is a distraction and a hindrance for multiple users.
Keyboards are difficult to share, and taking turns is basically the
only option. Some games alternate between keyboard and mouse
inputs, providing more opportunity for users to quibble when the
input method changes. Single keyboard sharing has many of the
same failings as single mouse sharing: one dominant user tends to
control the input.

Designers should stick to just one type of input idiom per game.
Switching between them is a constant source of strife, providing
more opportunity for dominant users to take control.

Projects have explored providing multiple keyboards [7], which
we believe to be a promising research direction. We hope that a
system comparable to Metamouse, utilizing multiple keyboards in
existing games, could be developed in the future.

7.3.3 Flexible Navigation
When sharing a game or working with students who have low

mouse proficiency, inflexible navigation is another factor that can
frustrate users. Some of the games we encountered only allowed
students to move through games sequentially. Students would
inevitably encounter a task that was unplayable as a shared game, or
which was simply far above the mouse proficiency of the players.
In this case, they would be forced to complete the task in order
to make progress. Often students replayed individual games, but
with a different user controlling the mouse. This was impossible
if the game did not provide a “restart” or “back” option. The best
game designs we encountered featured a website-like model with
a “homepage” and games which can be played or replayed in any
order. Designers should try to design in a flexible way, allowing for
students to quickly gain access to exactly the content they seek.

8. CONCLUSION
In this study, we described the design process forMetamouse, a

system for using multiple mice with existing single-player games
on one computer. During this study, we observed a number of facts
relevant to the design of shared educational (both single- and multi-
mouse) interfaces in the developing world.

Mouse proficiency was widely variable and on average consid-
erably lower than what technology designers might expect given
the literature on mouse proficiency in very young children. This
necessitated special consideration in designing the basic interaction
protocols for collaborative mouse movement. In implementing
these procedures, we found that simple usage models are best, and
that complex metaphors often build off of expert knowledge of
the existing mouse paradigm that young users may not have yet
developed.

Many of our design study findings generalize to shared single
mouse environments in the developing world. We recommend sev-
eral basic design standards for educational applications, including
flexible navigation paired with games that feature simple, mouse-
centric movement, and which avoid features that will create tension
or strife when shared. Given that sharing computers is the norm in
many developing regions, we urge designers of educational content
to embrace collaborative, sharable designs.

9. ACKNOWLEDGMENTS
The authors would like to thank the Azim Premji Foundation,

particularly Sukumar Anikar, S Santhosh, and Bharathish Kumar,
for their fantastic assistance in the field. We would also like thank
Matt Kam for his help in developing some of the techniques used
in this paper, Joyojeet Pal and Divya Ramachandran for their aid
in earlier iterations of this work, and the teachers, students, and
headmasters at the schools for their time, help, and patience. Lastly,
we would like to thank Telemundo, Anuj Tewari, Kuang Chen,
Alice Lin, Dori Garman, Peder Reiland, Valerie Hoagland, Denali
Kerr, and innumerable other people for their time spent playing
children’s games and emotional support.

This work was funded in part by National Science Foundation
Grant No. 0326582, a National Science Foundation Graduate
Research Fellowship, the Center for Information Technology Re-
search in the Interest of Society (CITRIS), and the Blum Center for
Developing Economies.

10. REFERENCES
[1] S. Amershi, M. R. Morris, N. Moraveji, R. Balakrishnan, and

K. Toyama. Multiple mouse text entry for single-display
groupware. InCSCW ’10: Proceedings of the 2010 ACM

conference on Computer supported cooperative work, pages
169–178, New York, NY, USA, 2010. ACM.

[2] L. J. Bricker, M. J. Baker, E. Fujioka, and S. L. Tanimoto.
Colt: A system for developing software that supports
synchronous collaborative activities. InProceedings of
Educational Media (EdMedia), pages 587–592, 1999.

[3] A. Donker and P. Reitsma. Drag-and-drop errors in young
children’s use of the mouse.Interacting with Computers,
19:257–266, 2007.

[4] A. Donker and P. Reitsma. Young childrenâĂŹs ability to
use a computer mouse.Computers & Education 48,
48:602â̆AŞ617, 2007.

[5] A. Druin, G. Revelle, B. B. Bederson, J. P. Hourcade,
A. Farber, J. Lee, and D. Campbell. A collaborative digital
library for children: a descriptive study of children’s
collaborative behaviors and dialogue. Technical report,
Department of Computer Science, University of Aarhus
Jordan B, Henderson A, 2003.

[6] A. P. Foundation. http://www.azimpremjifoundation.org.
Accessed on 3/2010.

[7] S. Garg, C. Robinson, C. Tseng, H. Underwood,
R. Anderson, and J. Pal. Multimath: numeric keypads for
math learning on shared personal computers. InICTD’09:
Proceedings of the 3rd international conference on
Information and communication technologies and
development, pages 492–492, Piscataway, NJ, USA, 2009.
IEEE Press.

[8] K. Heimerl, D. Ramachandran, J. Pal, E. Brewer, and
T. Parikh. Metamouse: multiple mice for legacy applications.
In CHI EA ’09: Proceedings of the 27th international
conference extended abstracts on Human factors in
computing systems, pages 3853–3858, New York, NY, USA,
2009. ACM.

[9] K. Heimerl, D. Ramachandran, J. Pal, E. Brewer, and
T. Parikh. Metamouse: Multiple mice for legacy applications.
In Information and Communication Technologies and
Development (ICTD), pages 490 –490, April 2009.

[10] K. Heimerl, J. Vasudev, K. Buchanan, E. Brewer, and
T. Parikh. Metamouse: Improving multi-user sharing of
existing educational applications. InIEEE/ACM
International Conference on Information and
Communication Technologies for Development, 2010.

[11] J. P. Hourcade. Interaction design and children.Foundations
and Trends in Human-Computer Interaction, 1:277–392,
2008.

[12] J. P. Hourcade, B. B. Bederson, and A. Druin. Preschool
children’s use of mouse buttons. InCHI ’04: CHI ’04
extended abstracts on Human factors in computing systems,
pages 1411–1412, New York, NY, USA, 2004. ACM.

[13] J. P. Hourcade, B. B. Bederson, A. Druin, and
F. Guimbretière. Differences in pointing task performance
between preschool children and adults using mice.ACM
Trans. Comput.-Hum. Interact., 11(4):357–386, 2004.

[14] J. P. Hourcade, M. Crowther, and L. Hunt. Does mouse size
affect study and evaluation results?: a study comparing
preschool children’s performance with small and
regular-sized mice. InIDC ’07: Proceedings of the 6th
international conference on Interaction design and children,
pages 109–116, New York, NY, USA, 2007. ACM.

[15] M. Kam, A. Mathur, A. Kumar, and J. Canny. Designing
digital games for rural children: a study of traditional village
games in india. InCHI ’09: Proceedings of the 27th

international conference on Human factors in computing
systems, pages 31–40, New York, NY, USA, 2009. ACM.

[16] Y. Lou, P. C. Abrami, and S. d’Apollonia. Small group and
individual learning with technology: a meta-analysis.Review
of Educational Research, 71(3):449–521, 2001.

[17] E. Mazur.Peer Instruction: A User’s Manual. Series in
Educational Innovation. Prentice Hall, Upper Saddle River,
1997.

[18] A. Moed, O. Otto, J. Pal, U. P. Singh, M. Kam, and
K. Toyama. Reducing dominance in multiple-mouse learning
activities. InCSCL’09: Proceedings of the 9th international
conference on Computer supported collaborative learning,
pages 360–364. International Society of the Learning
Sciences, 2009.

[19] N. Moraveji, K. Inkpen, E. Cutrell, and R. Balakrishnan. A
mischief of mice: examining children’s performance in
single display groupware systems with 1 to 32 mice. InCHI
’09: Proceedings of the 27th international conference on
Human factors in computing systems, pages 2157–2166,
New York, NY, USA, 2009. ACM.

[20] N. Osawa. Aggregate pointers to support large group
collaboration using telepointers. InCHI ’06: CHI ’06
extended abstracts on Human factors in computing systems,
pages 1169–1174, New York, NY, USA, 2006. ACM.

[21] J. Pal, M. Lakshmanan, and K. Toyama. "my child will be
respected": Parental perspectives on computers and
education in rural india.Information Systems Frontiers,
11(2):129–144, 2009.

[22] J. Pal, U. S. Pawar, E. A. Brewer, and K. Toyama. The case
for multi-user design for computer aided learning in
developing regions. InWWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages
781–789, New York, NY, USA, 2006. ACM.

[23] U. S. Pawar, J. Pal, R. Gupta, and K. Toyama. Multiple mice
for retention tasks in disadvantaged schools. InCHI ’07:
Proceedings of SIGCHI conference on Human factors in
computing systems. ACM, 2007.

[24] U. S. Pawar, J. Pal, and K. Toyama. Multiple mice for
computers in education in developing countries. In
IEEE/ACM International Conference on Information and
Communication Technologies for Development, 2006.

[25] S. D. Scott, R. L. M, K. M. Inkpen, and E. Lab.
Understanding children’s interactions in synchronous shared
environments. InProceedings of Computer Supported
Cooperative Learning, pages 333–341, 2002.

[26] R. E. Slavin. Cooperative learning.Review of Educational
Research, 50(2):315–342, June 1980.

[27] R. E. Slavin. Research on cooperative learning and
achievement: What we know, what we need to know.
Contemporary Educational Psychology, 21:43–69, 1996.

[28] D. Stanton, H. Neale, V. Bayon, and N. Rd. Interfaces to
support children’s co-present collaboration: Multiple mice
and tangible technologies. InPROC. CSCL, pages 342–351.
ACM Press, 2002.

[29] J. Stewart, B. B. Bederson, and A. Druin. Single display
groupware: a model for co-present collaboration. InCHI
’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 286–293, New York,
NY, USA, 1999. ACM.

[30] F. Tian, F. Lv, J. Wang, H. Wang, W. Luo, M. Kam, V. Setlur,
G. Dai, and J. Canny. Let’s play chinese characters: mobile
learning approaches via culturally inspired group games. In

CHI ’10: Proceedings of the 28th international conference
on Human factors in computing systems, pages 1603–1612,
New York, NY, USA, 2010. ACM.

[31] E. Tse and S. Greenberg. Rapidly prototyping single display
groupware through the sdgtoolkit. InProceedings of the Fifth
Australasian User Interface Conference, volume 28, 2004.

[32] WonderWurks. Teamplayer.
http://www.wunderworks.com/education/. Accessed on
3/2010.

[33] D. Wood and C. O’Malley. Collaborative learning between
peers. InEducational Psychology in Practice, volume 11,
pages 4–9, 1996.

