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Abstract

Air pollution, particularly PMj s, poses significant health risks to
outdoor workers in urban areas like Bangkok and Chiang Mai,
yet their actual exposure remains poorly understood. Traditional
fixed-site monitors often underestimate actual exposure levels. To
address this, we introduce MobileSense, a low-cost mobile air qual-
ity monitoring platform that provides real-time PM; 5 data using
a helmet-mounted sensor system with GPS tracking and alerts. A
seven-month field study revealed that front line motorcycle riders
experience significantly higher PMj 5 exposure than recorded by
fixed monitors, exceeding WHO safety limits, even in the non pol-
luted season. Health risk assessment using the Hazard Quotient
(HQ) method classified 6 out of 10 riders as high-risk. To mitigate
exposure, we evaluated three strategies: (1) a daily 1-hour break, (2)
full days off on consecutive high-pollution days, and (3) full days off
on peak pollution days. Bangkok riders benefit more from hourly
breaks during rush hours, while Chiang Mai riders benefit more
from full days off due to consistently high pollution levels. Our find-
ings highlight the need for targeted exposure reduction strategies
and provide valuable insights for protecting outdoor workers from
air pollution.
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1 Introduction

Urban air pollution, particularly fine particulate matter (PMy 5),
poses a significant public health threat in rapidly developing cities
such as Bangkok [2, 13, 15] and Chiang Mai [17]. In recent years,
these cities have commonly experienced PMy 5 levels exceeding safe
thresholds, endangering millions of residents. Prolonged exposure
to such pollutants has been linked to severe health risks, includ-
ing respiratory diseases, cardiovascular conditions, and reduced
life expectancy. While policy measures such as work-from-home
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(WFH) initiatives have been introduced to minimize pollution expo-
sure, these benefits are largely limited to white-collar professionals.
Outdoor workers, such as food delivery riders, street cleaners, and
motorcycle taxi drivers, remain highly vulnerable with no alterna-
tive but to endure prolonged exposure to hazardous air conditions.
Despite their increased health risks, real-time personal exposure
data for these groups remain scarce, representing a critical gap in
current air pollution research and mitigation efforts.

Fixed-site air quality monitoring, even with low-cost sensor
networks [20, 23], are usually sparse and need an algorithmic
approach [13] or simulation [15] to estimate and approximate
fine-grained spatial variations in pollution levels. A recent study
by [19] indicates that outdoor (PM3y 5) concentrations are consis-
tently higher than indoor levels, placing outdoor workers at high
risk of exposure to harmful particulate matter. This discrepancy
underscores the need for more precise exposure assessments, par-
ticularly for individuals who spend prolonged hours outdoors and
whose real-world pollution exposure is often underestimated by
traditional air quality monitoring frameworks.

In this paper, we introduce MobileSense, a low-cost, mobile air
quality sensor platform designed for motorcycle riders. Mounted on
a rider’s helmet, MobileSense continuously monitors air pollution
exposure and GPS location in real-world conditions. The platform
integrates with a real-time dashboard that tracks pollution levels on
the move and includes an alert system to warn riders of hazardous
air quality or sensor malfunctions. To demonstrate its feasibility,
we conducted a seven-month field study with volunteer riders in
Bangkok and Chiang Mai, Thailand. We analyzed the collected data
to assess actual pollution exposure in both cities, comparing the
levels with WHO-recommended safety limits. Finally, we performed
a health risk assessment for each rider and proposed mitigation
strategies, such as taking short breaks during the day or full days
off, to minimize long-term exposure risks. The findings from this
study will provide critical insights into occupational air pollution
risks and inform policies aimed at protecting outdoor workers from
long-term health impacts.

2 Related Work

With the advent of mobile sensors, researchers have performed
extensive work to study spatial, temporal, and personal exposure
to pollutants like PMj 5. Studies using mobile sensors have been
conducted using specialized vehicles or fixed routes. Apte et al. [6]
conducted a year-long study using Google Street View vehicles
equipped with reference-grade air quality sensors (NO, NO; and
black carbon) to generate annual daytime pollution maps with a
30-meter spatial resolution. Similarly, Ghaida et al. [14] collected
street level PM3 5 data at 1-second intervals using Google Street
View cars in Jakarta, Indonesia, revealing correlations between air
quality disparities and socioeconomic factors in eight neighbor-
hoods. Meanwhile, DeSouza et al. [12] mounted low-cost sensors
on municipal trash trucks to monitor PMy 5 concentrations, iden-
tifying pollution hotspots and characterizing emission sources by
analyzing median pollutant levels along 30-meter road segments.
However, these existing approaches have limitations when studying
the occupational exposure patterns of outdoor workers, particularly
food delivery drivers on motorcycles, whose routes and schedules

634

Mukhia et al.

are inherently unpredictable. In addition, motorcycle riders lack
access to power terminals, requiring portable power supplies and
energy-efficient sensors.

Behr et al. [9] developed a smart helmet equipped with air quality
and hazardous event detection for the mining industry. The system
is capable of detecting dangerous levels of hazardous gases, helmet
removal by miners, and collision or impact events. Alim et al. [5]
designed a smart helmet for motorcyclists that integrates an alcohol
detection system. This system prevents an intoxicated driver from
starting the engine and notifies a designated contact in the event of
an accident, improving safety on the road. Although similar to our
work, which utilizes the helmet-based approach, these systems rely
on Zigbee to transmit dangerous events and GSM text messages
for accident notifications, which are unsuitable for applications
requiring frequent sensor data transmission.

Large-scale initiatives further demonstrate the potential of mo-
bile sensing for city-wide pollution mapping. Liu et al. [31] deployed
125 electric taxis equipped with COz, NO3, and PM3 5 sensors over
13 months, achieving 80% coverage of major roadways and enabling
pollution mapping at a resolution of 200 meters. A study by Aswin
et al. [16] evaluated the spatiotemporal exposure of auto-rickshaw
drivers to PM pollution. Using a mobile monitoring setup in an auto-
rickshaw, PMjo, PM> 5, and PM; concentrations were measured
during peak and non-peak weekday hours across 15 administrative
zones. However, given our study’s limited number of participants
and extended duration, a single sensor malfunction could result in
significant data loss, highlighting the need for real-time data col-
lection through a cellular network that can monitor sensor health.
Furthermore, physically requiring participants to collect data from
sensor loggers would interfere with their daily work routines. To
address these challenges, we implemented an automated notifica-
tion system that alerts participants when their sensors malfunction,
enabling immediate corrective actions such as sensor restart. Our
modular sensor system design also allows targeted replacement
of malfunctioning components. These improvements enable long-
term sensor deployment with minimal participant involvement
while continuously monitoring sensor health.

Mobile sensing has also been applied to assess personal expo-
sure. Win-Shwe et al. [33] tracked real-time PMj 5 exposure for
30 middle-aged participants using GPS-enabled Pocket PM3 5 sen-
sors during their daily activities. Although promising with its 1 Hz
data collection rate and portability, the system lacks real-time data
collection capabilities.

A study by Sun et al. [18] investigated the accuracy and effective-
ness of real-time personal PM; 5 monitoring using low-cost sensors
compared to fixed-station monitoring for asthmatic children in the
study area. Forty-seven children carried a low-cost sensor (PICO)
that measured PMy s, temperature, and humidity every 5 minutes,
alongside GPS location. These data were compared with hourly
PM; 5 data from the nearest fixed monitoring station. The com-
mercial portable sensor used in the study lacks cellular capability,
which limits city-wide real-time data collection.

Although some studies in Bangkok and Chiang Mai have ex-
plored health outcomes associated with exposure to air pollution,
they often rely on static monitoring data rather than individualized,
high-resolution exposure measurements. Ahmad et al. [2] have car-
ried out a health risk assessment in Bangkok using data from three
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Figure 1: System Architecture

static reference sensors in Ari, Din Daeng, and Bangna, without
involving participants. Kausar et al. [17] have conducted studies to
determine the impact of PM3 5 on ocular health of 50 individuals
using data obtained from the Northern Thailand Air Quality Index
(NTAQI) as the baseline. In contrast, our system combines mobile
sensing with continuous, participant-specific exposure monitoring,
enabling more accurate characterization of individual health risks
in real-world occupational settings.

3 MobileSense’s Architecture

The system architecture of MobileSense, shown in Figure 1, is de-
signed to collect, process, and share real-time air quality data with
high spatial resolution. The architecture is composed of four key
components:

(1) The Mobile Sensing Node is mounted on the rider’s helmet
and collects environmental data such as PMy 5 levels along
with GPS positioning for precise localization.

(2) The Communication Layer facilitates the transmission of
collected data from the mobile sensing unit to the cloud via
a cellular network.

(3) The Data Processing Unit is hosted in the cloud and includes
an MQTT broker for efficient data transmission, a database
for storing the collected data, and a web dashboard for visu-
alizing the information; and

(4) The Notification System, integrated with a messaging service,
that alerts the rider in case of any malfunction detected in
the mobile sensing unit.

Details of each component are described below:

3.1 Mobile Sensing Node

The design of the mobile sensing node (MSN) requires careful con-
sideration of size, weight, safety, power consumption, airflow, and
cost. To accurately measure air pollution inhaled by the rider, we
mounted the sensing unit on the rider’s helmet. This placement
ensures precise exposure measurements while keeping the unit
lightweight, secure, and comfortable for extended use.

The MSN consists of three main components: (1) the sensor box,
which houses the air quality sensors; (2) the control box, which
handles data processing and communication; and (3) the power
source, which supplies energy to the entire system.
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Sim Card Tray
FCB-Antenna

(c) A complete set of MSN

Figure 2: The hardware design of the Mobile Sensing Node
(MSN) includes the sensor control box (a), the control box (b),
and (c) a complete MSN setup attached on the rider while the
control box attached the vest jacket.

3.1.1 Sensor Box. The sensor box is equipped with multiple air
sensors, including those for Particulate Matter (PM;, PM3 5, and
PMjg), Carbon Dioxide (CO2), Carbon Monoxide (CO), Tempera-
ture, Humidity and Air Pressure. For particulate matter detection,
we selected the Plantower PMS7003 sensor [27] due to its afford-
ability, proven reliability, and excellent unit-to-unit consistency,
as confirmed by several studies [7, 8, 10]. The CO3 and CO sen-
sors were selected from the Winsen brand, specifically the MH-Z16
model [35] for COy and the ZE07 model [34] for CO. Temperature,
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humidity and air pressure are measured using the BME280 [29]
sensor, chosen for its compact design and low power consumption.
The PMS7003, MH-Z16, and ZE07 sensors are connected to the main
control unit (MCU) via UART lines through a multiplexer. Mean-
while, the BME280 is connected to the MCU via the I12C line. The
orientation of the sensors is shown in the Figure 2a. The PM sensor
is placed on the left side of the box, which features a cutout for
better ventilation. This cutout is designed with a net-like shape to
allow optimal airflow to the sensor while maintaining the strength
of the box, protecting the sensor from direct exposure to rain, debris,
and impacts, ensuring accurate air quality measurement.

The sensor box is connected to the control box housing the
MCU through two RJ45 cables, which transmit power, ground, I12C
signals, UART communication, analog signals, enable signals, and
multiplexer selection signals from the control box to the sensor box.
These cables provide a secure and efficient data transfer pathway,
ensuring that the sensor data is reliably communicated to the MCU
for processing. The sensor box is 3D-printed to achieve a compact
design that ensures comfort for the rider. The box measures 50
mm in width, 6 mm in length, and 30 mm in depth, making it both
lightweight and ergonomic.

3.1.2  Control Box. Figure 2b illustrates the control box, which
manages data collection from all connected sensors, processes
the information, and transmits it to the server. At its core is the
ESP32-WROOM-32D [32], a cost-efficient, low-power system-on-
chip (SoC) microcontroller with an embedded Xtensa dual-core 32-
bit CPU running at 160 MHz. For data transmission, the SIM7600G-
H-M2 [21] module from SIMCom, a 4G communication module, is
selected for its ability to support uplink speeds of up to 50 Mbps.
Also the software multiplexing between GNS and Cellular data
reduces the bandwidth as they have their overhead. An FCB-type
antenna is chosen for its ease of integration inside the control
box, ensuring a compact design. Additionally, the SIM7600G-H-M2
module includes GNSS functionality, enabling real-time location
tracking alongside air pollution data collection. Figure 2c illustrates
the mobile sensing node deployed on a rider. The sensor box is
mounted on the helmet, while the control box, is securely placed in
apocket of the rider’s vest jacket. The two components are intercon-
nected via an Ethernet cable, ensuring seamless data transmission.

The micro-controller firmware is designed with a modular archi-
tecture to ensure efficient and reliable system operation. It includes
a Hardware Abstraction Layer (HAL) to provide seamless access to
hardware resources, along with a Configuration Manager that over-
sees system settings and parameters. A Storage Manager, utilizing
the FAT32 file system, enables organized data storage on an SD card.
The Sensor Manager is responsible for periodic data acquisition, en-
suring timely collection of information from all connected sensors.
Additionally, the firmware integrates a Network Manager to han-
dle network connectivity and related tasks, while an HTTP Server
provides a web-based user interface for system configuration. To
support communication in IoT (Internet of Thing) applications, an
MQTT Client is included, and an RTC Handler manages real-time
clock functionality to ensure accurate timekeeping.

The Sensor Manager operates by collecting data from all attached
sensors at a fixed interval of one second. This data is then saved to
the SD card, leveraging the Storage Manager for structured storage.
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3.1.3  Power Source. The power source is a critical component of
our design, as it must provide sufficient capacity while remaining
compact and lightweight to ensure portability. Our system needs to
operate for approximately 8-10 hours to accommodate the working
shifts of each rider. For this reason, we selected a power bank for
convenience, allowing easy battery swapping during the day if
needed. The air helmet system consumes around 3.5 watt-hours,
powered by a 5V supply from the battery. After evaluating the
power needs, we opted for a 10,000 mAh battery with a discharge
capacity of 36 watt-hours, which is sufficient to support up to 8
hours of operation per day.

3.1.4 Cost. The total cost of a complete MobileSense Node (MSN)
unit is approximately 400 USD. The estimated costs are divided as
follows: the sensor box, which houses multiple sensors including
the PMS7003 [27], MH-Z16 [35], ZE07 [34], and BME280 [29], costs
approximately 120 USD. The control box, containing the ESP32-
WROOM-32D System-on-Chip (SoC) microcontroller and a 64 GB
SD card, is estimated at 50 USD. The 4G communication module
and GPS sensor (SIM7600G-H-M2) add approximately 50 USD. The
printed circuit board (PCB) and additional electronic components
contribute around 100 USD. Finally, the enclosure, fabricated using
3D printing, costs about 80 USD.

Compared to other low-cost sensors on the market, prices typi-
cally range from 200 to 500 USD. For example, the PurpleAir Zen
sensor costs approximately 300 USD [28], while the AirVisual Out-
door air quality monitor is priced around 420 USD [4]. In our pre-
vious project, SEA-HAZEMON (1, 20], we deployed static sensor
nodes across both urban and forested areas, with each unit cost-
ing approximately 350 USD. The cost of the MobileSense Node is
slightly higher, primarily due to the inclusion of a 4G communi-
cation module and the custom-fabricated enclosure designed to
integrate with a helmet.

The MSN is designed with modularity in mind, allowing it to sup-
port various sensor configurations depending on the application’s
requirements and budget. This flexibility makes the system scalable
and cost-efficient for different deployment scenarios. For instance,
in resource-constrained settings, removing certain sensors such as
the CO3, CO, or BME280 modules can reduce the overall cost.

3.2 Communication Protocol

To efficiently collect and transmit data from our mobile sensing
nodes, the Message Queuing Telemetry Transport (MQTT) [22]
protocol is used due to its low bandwidth requirements and reli-
able message delivery. The control box establishes and maintains a
persistent connection to an MQTT broker hosted on a cloud server,
using the lightweight MQTT client library provided by Espres-
sif Systems, the manufacturer of the micro-controller used in the
system.

The Network Manager reads the data from the SD card, for-
mats it into JSON object, and publishes it to a predefined MQTT
topic, "air-monitor/sensor_id/data", where sensor_id represents the
unique identifier for the sensor. An MQTT client, operating as a
subscriber on the same cloud server as the broker, receives the
published JSON data in real time. Upon successful receipt, the sub-
scriber sends an acknowledgment to the sensor on a fixed topic,



MobileSense: Tracking Air Pollution Exposure of Frontline Motorcycle Riders Using a Mobile Low-Cost Sensor Platform  COMPASS ’25, July 22-25, 2025, Toronto, ON, Canada

"air-monitor/sensor_id/ack", containing the timestamp of the col-
lected data. Following this, the data is stored in a MySQL database
for further analysis and processing. Once the acknowledgment is
received by the sensing node, the corresponding entry on the SD
card is deleted to prevent the retransmission of duplicate data.

The data publishing rate matches the data collection rate of 1
packet per second (1 Hz). Each sensor data packet comprises 2
bytes for the fixed MQTT header, 41 bytes for the variable header
(topic name) and 430 bytes for the payload, totaling approximately
473 bytes per second at the application layer. However, accurately
estimating uplink bandwidth usage requires accounting for TCP
and 4G-LTE network overhead.

3.3 Data Visualization

A web-based application was selected for real-time data monitoring
and visualization due to its cross-platform capability, allowing users
to access monitoring data from any device. Users can easily access
the data through a web browser without the need to install addi-
tional software. Figure 3 presents an example of our web interfaces
for data monitoring and visualization. Figure 3a presents current air
quality levels and the location of each user. Users can query data by
selecting specific sensor types (e.g. PM3y 5, temperature, CO2) and
specifying the date and time of the measurements, as demonstrated
in Figure 3b.

The web application offers a user-friendly interface that provides
real-time updates on current air quality levels and GPS locations
of sensors. As shown in Figure 3, the sensors’ locations are shown
on the map interface as circles, filled with color, which indicate
the concentration of the pollution. Users can also select the date
and time duration to explore historical data to identify trends and
patterns, aiding in informed decision-making. The interface also
allows users to choose data by specific type of sensors (e.g., PM3 5,
temperature, CO3) and timeframes.

The application’s backend components, powered by PHP and
Python, retrieve sensor data from the MySQL database and pro-
cess it for presentation on the frontend. The frontend, powered by
HTML, JavaScript and Google Maps API, renders the data in an
interactive map display, showing sensor locations and data overlays.

3.4 Notification System

Long term measurement may cause the sensor node to malfunction
or become unresponsive, leading to data loss. To address this issue,
we implemented a notification service that alerts the rider whenever
the node goes offline or becomes unreachable. This allows the
rider to promptly check the equipment and follow troubleshooting
instructions provided by the system.

For notifications, we chose LINE, a widely-used messaging ap-
plication across many Asian countries, which all our volunteer
riders are already familiar with. LINE offers a messaging API [11],
allowing us to forward notification messages from our server to
the riders. The integration between the notification server and the
LINE platform is illustrated in Figure 1. Initially, we created a LINE
chatbot and registered it with the LINE server by linking the URL of
our notification server as a webhook. The LINE server then issued
a valid token to facilitate message exchanges between the chatbot
and our notification server.
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In our configuration, the notification server continuously moni-
tors sensor data from each rider. If no data is received for more than
2 minutes, a notification is sent to the rider, prompting them to
initiate the troubleshooting process. As part of the procedure, riders
are advised to wait for 5 minutes after receiving the notification.
This delay accounts for potential temporary disconnections, such
as those caused by cell site handovers or areas with poor signal
coverage, allowing the node to automatically reconnect. The early
alert is intentional and important. Not all sensor failures automat-
ically resolve within the 5-minute window. Some problems, such
as physical disconnections caused by jerky movements, require
manual intervention. A delayed notification in such cases would
increase downtime and result in increased data loss. By notifying
the rider after just 2 minutes without data, the system emphasizes
responsiveness and helps enable faster recovery from persistent
failures.

To enhance reliability, the control box firmware is designed to
detect and address faulty events. For example, it can automatically
reset the network card or reboot the entire system. However, if the
node remains offline for more than five minutes without the rider
receiving a follow-up notification indicating that the sensor is back
online, manual intervention is required. In such cases, riders must
manually check their node by following these steps: inspecting the
power cable, checking the battery, and performing a hard reset of
the node.

4 Performance Evaluation of Low-Cost Sensor

Although low-cost sensors are typically pre-calibrated by the man-
ufacturer, these calibrations are often generic and may not account
for the specific environmental conditions in different regions. Fac-
tors such as temperature, humidity, and the presence of other pol-
lutants can significantly affect sensor performance. Therefore, field
calibration against high-precision reference instruments is crucial
to maintain accuracy over time. In line with this, we followed the
microsensors challenge protocol [3], ensuring that each sensor
node was thoroughly tested in a real-world ambient environment
by co-locating them with a reference air quality station owned by
the Pollution Control Department of Thailand (PCD). The station
locates in the downtown area of Bangkok, utilizes the beta ray at-
tenuation method [30] to measure PM 5 concentrations, providing
hourly averages for comparison.

Figure 4 shows a time series of hourly average PM; 5 readings
from the reference air quality station (PCD) alongside data from
low-cost sensors over a 5-day measurement period (117 hours).
The readings from the low-cost sensors display a strong correla-
tion with those from the PCD station, with Pearson correlation
coefficients (r) consistently above 0.81, indicating a very strong
positive linear relationship. This high correlation suggests that the
low-cost sensors effectively track PMy 5 concentration changes in
alignment with the reference station, with only minor discrepan-
cies. The slight elevation in low-cost sensor readings may reflect
their higher sensitivity. Figure 5 presents scatter plots comparing
PM3 5 readings from the PCD station and low-cost sensors 101, 102,
103, and 104, showing correlation coefficients (r) of 0.8159, 0.8164,
0.8153, and 0.8137, respectively
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PM2.5 Concentration (ug/m3)
o2 8888383888

Date - Hour
—-PCD ——sesorlD 104 ——sesorl D 106 ——sesorlD 107 ——sesoriD 108
——sesoriD 109 —sesorlD 120 —sesorlD 152 —sesorl 1D 153 sesorlD 154 ——sesorl 1D 156 ——sesorlD 157 ——sesorlD 158

Figure 4: Comparison between PM; 5 concentration readings
from the reference station (PCD) and low-cost sensors.
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deployed in Bangkok and three in Chiang Mai. These static nodes
were equipped with the same sensors as the Mobile Sensing Node
(MSN) to ensure unbiased comparisons. Figures 6a and Figure 6b
illustrate the study areas in Bangkok (1,571.4 km?) and Chiang Mai
(721.8 km?), with cross-mark icons indicating the locations of our
static sensors.

In parallel, we recruited motorcycle riders working in taxi or
parcel delivery services, as they are among the most exposed to
air pollution. Recruitment was carried out through social media
messaging platforms and by directly requesting rides via motorcycle
taxi applications. The primary criteria for recruitment was working
at least five hours a day. Those who did not meet these criteria
were excluded from the study. Ultimately, we successfully enlisted
10 riders (5 in Bangkok and 5 in Chiang Mai). Table 1 shows the
demographics of the participants.
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BKK1 Rideshare, Legacy 2250
BKK2 Legacy 800
BKK3 Rideshare, Legacy 1300
BKK4 Rideshare, Legacy 1350
BKK5 Rideshare 1800
CMI1 Rideshare 700
CMI2 Rideshare 700
CMI3 Rideshare 600
CMI4 Rideshare 500
CMI5 Rideshare 900

Figure 5: Scatter plots comparing PM; 5 readings from low-
cost sensors and air quality reference station

5 Experimental Design

To evaluate the sensor designs, we conducted a deployment in
two major cities in Thailand: Bangkok and Chiang Mai. Prior to
the experiment, we set up static monitoring stations on buildings
and roadside units in central areas of each city. The static sensors
operated on wall power and utilized WiFi connectivity instead
of battery power and cellular data. A total of nine sensors were
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Table 1: Reported sources of income participants and the
self-estimated daily income in Baht (approximately 34 Baht
corresponds to 1 USD). The DriverID contains an abbreviation
for their location (BKK for Bangkok and CMI for Chiang
Mai).

To ensure we captured data before, during, and after the peak
pollution season, the experiment was conducted from November
1, 2023, to May 15, 2024, covering 197 days (nearly seven months).
On the first day, we delivered equipment and set up the MSNs for
all riders at both sites simultaneously. Riders followed their regular
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Figure 6: Map of the study areas in Bangkok (a) and Chiang Mai (b), highlighting key routes and locations where MobileSense

data was collected as well as locations of static sensor nodes.

work schedules and routes organically throughout the experiment.
Every two to three weeks, they were asked to meet with our team
for equipment checks and discussions about their recent activities.
To compensate for their participation, each rider received 30 USD
per week.

The measurements focused on pollution exposure during the
riders’ working hours, with each rider instructed to activate the
sensor at the start of their shift and deactivate it upon finishing. Data
was collected at a frequency of 1 Hz, capturing one data sample per
second to ensure high-resolution tracking of air pollution exposure
throughout their routes.

6 Results

In this section, we first evaluate the reliability of the MobileSense
platform by analyzing the uptime and downtime of each Mobile
Sensing Node (MSN) throughout the measurement campaign. Next,
we examine the distribution of PM3 5 concentrations collected from
both cities, identifying and filtering out outliers. We then compare
the daily PM3 5 exposure against the recommended threshold and
static node readings. The temporal distribution of exposure is also
analyzed to identify peak pollution periods during the day. Finally,
we calculate the Hazard Quotient proposed by USEPA to assess the
health risks faced by each frontline rider.

6.1 System Reliability Analysis

This section aims to analyze the reliability of our system by mea-
suring the uptime and downtime periods that occur throughout
the day. To perform this measurement, we utilized the centralized
notification system described in subsection 3.4, as it accounts for all
factors contributing to downtime, such as intentional shutdowns
during breaks, unexpected system failures, and network disconnec-
tions. The notification system sends two types of messages to the
riders: Up and Down messages.

Note that two consecutive Up or Down messages are not possible
because the state of all sensors deployed in the study area is man-
aged by the centralized notification system. This system monitors
the sensor’s data transmission status and assigns the Up or Down
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state based on a two-minute window. If the sensor continuously
transmits data for two minutes after a period of inactivity, it is
considered Up. Conversely, if the sensor remains inactive for two
minutes, it is classified as Down. If an Up message is followed by
a Down message, the time interval between these two messages
is considered Uptime. Conversely, if a Down message is followed
by an Up message, it is classified as Downtime. The maximum
downtime duration for each day is excluded from the analysis, as it
indicates that the rider is off work.

Figure 7 presents a plot of the average system uptime and down-
time frequency observed throughout the day. Among the boxes,
BKK2 and CMI4 stand out with the highest uptime percentages,
achieving 98% and 95%, respectively, indicating strong reliability of
the system. In contrast, BKK3 and CMI1 exhibit lower uptime rates
of 82% and 80%, potentially impacting the volume of data collected
from these units. This reduced uptime is linked to their high fre-
quency of downtime occurrences; as shown in the plot, BKK3 and
CMI1 experience downtime approximately 3 and 3.5 times per day,
respectively.
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Figure 7: Average uptime percentage of each rider over 7
months measurement period

To investigate the impact of downtime, we measured the recov-
ery time, defined as the interval between when a node goes offline
and when it comes back online. This metric provides insight into
the responsiveness of both the notification system and the trou-
bleshooting process. The distribution of recovery times is shown in
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a box plot in Figure 8 . Although recovery times for all boxes exhibit
a negatively skewed distribution with some long-tail outliers, the
average recovery time remains relatively low, indicating generally
quick recovery or effective mitigation strategies. For example, de-
spite experiencing the highest downtime frequency at 4.25 times
per day, the BKK1 box has a median recovery time of only 4.54
minutes. This aligns with our troubleshooting procedure outlined
in subsection 3.4, where riders are advised to wait 5 minutes after
receiving a notification, as temporary disconnections can occur due
to cell site handovers. If recovery time exceeds 5 minutes, riders
are instructed to check the battery and cable connections before
manually resetting the system, which may take additional time. For
instance, BKK5 has a low recovery time (14.28 minutes), suggesting
swift recovery compared to others, such as CMI4, with a recovery
time of 110.61 minutes. Notice that, during the measurement period,
CMI4 was awaiting replacement, contributing to its extended re-
covery time. Another contributing factor to downtime is the breaks
riders take during their workday, such as lunchtime, during which
downtime was consistently observed across all riders.

%;;Laiiﬁa

BKK1 BKK2 BKK3 BKK4 BKKS Mt cmi2 <V} cmi4 cmis

Rider

Minutes

Figure 8: Boxplot showing the distribution of recovery times,
highlighting the median, quartiles, and potential outliers in
the data.

6.2 Distribution of PM,.5 Concentrations

During a 7-month period, more than 50 million PMj 5 samples (n)
were collected from Bangkok and Chiang Mai. The distribution of
PM3 5 concentrations in both cities is shown in Figure 12. Figure 9a
presents the Probability Density Function (PDF) for PM3 5 levels,
which range from 0 to 3708 pg/m3. The most commonly observed
concentrations are 31.01 and 20.01 ug/m> for Bangkok and Chiang
Mai respectively. Figure 9b shows the Cumulative Distribution
Function (CDF) of PM3 5 concentrations measured in Bangkok and
Chiang Mai. The distributions indicate that PMj 5 concentrations
exceed 15 pug/m® with probabilities of 0.93 in Bangkok and 0.91 in
Chiang Mai, respectively.

Although the PM3 5 sensor (PMS7003) can measure concentra-
tions greater than 1000 pug/m?>, the recommended measurement
range is 0 to 500 pug/m>. Therefore, we applied a 500 ug/m> cut-off
point to exclude outliers from our data set. As shown in Figure 9b,
the probability that PMj 5 readings exceed this cut-off point in both
Bangkok and Chiang Mai is very low.

6.3 Average Daily PM,.5 Exposure

To assess participants’ PMy 5 exposure during working hours, we
collected continuous measurements from the start to the end of
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each rider’s shift, restricted to periods spent outdoors, primarily
while riding. For comparison, we reference data from static sen-
sors (Figures 6a and 6b) equipped with identical PM3 5 sensing
technology as the MobileSense nodes to minimize measurement
bias. Static sensor readings are averaged over 6:00 a.m. to 8:00 p.m.,
corresponding to the riders’ typical working hours.

Figure 10 presents the average daily PMa 5 exposure recorded
by each rider (individual dots). To facilitate comparison with static
sensors located in Bangkok and Chiang Mai, riders’ daily exposures
are averaged and depicted with dashed lines, alongside the daily
averages from the respective static sensors shown as solid lines.

The data indicate that average PM3 5 levels measured by riders
during their shifts were consistently higher than those recorded by
static sensors over the same 6 a.m.—8 p.m. period. In Bangkok, rider-
based (mobile sensor) measurements exceeded those from static
sensors even during November and December, typically consid-
ered a non-critical pollution period. During this time, static sensor
readings largely remained below 50.g/m>, whereas mobile sensor
measurements frequently approached to 100ug/m>. This dispar-
ity widened from January to February, corresponding to the peak
PM3 5 season in Bangkok. Notably, on 30 January 2024, the highest
rider-based average PM3 5 exposure was recorded at 133.8pg/m?,
compared to 88.1ug/m3? from static sensors. Although PM 5 levels
in Bangkok began to decline from March onwards, mobile sensor
readings continued to remain significantly elevated relative to the
static sensor measurements.

In contrast to Bangkok, PM3 5 patterns in Chiang Mai exhibit
a different trend. From November to March, average PM3 5 levels
recorded by mobile sensors closely tracked those measured by static
sensors. However, during April and May, mobile sensor readings fell
below those from the static nodes. Even on the peak pollution day,
6 April 2024, when static sensors recorded an average PM3 5 con-
centration of 283.3ug/m>, the corresponding mobile sensor average
was notably lower at 219.6u1g/m>.

All mobile and static sensor nodes employed in this study used
the PMS7003 PM3 5 sensor, which is known for its strong unit-
to-unit consistency [10]. Thus, discrepancies between rider expo-
sure measurements and static sensor readings are unlikely to stem
from sensor variability. In Bangkok, elevated PM3 5 levels recorded
by mobile nodes are mainly attributable to on-road vehicle emis-
sions [24], as riders spent extended periods in traffic-dense areas,
close to emission sources. In contrast, static sensors were generally
located away from major roadways, which likely contributed to
lower PM3 5 measurements.

In Chiang Mai, PM3 5 measurements from mobile sensors gener-
ally aligned with those from static sensors, reflecting the relatively
low contribution of on-road vehicle emissions in the area. However,
March and April correspond to the typical harvesting period, which
involves extensive crop residue burning and forest fires. As a result,
PM; 5 concentrations rose sharply to hazardous levels, consistent
with annual patterns. Interviews with riders indicated that, during
this period, they often minimized outdoor exposure by staying in-
doors during breaks. Additionally, some riders took days off while
leaving their sensor nodes operational. These behavioral factors
likely contributed to greater variability in mobile measurements
and help explain why mobile sensor data occasionally fell below
static sensor readings.



MobileSense: Tracking Air Pollution Exposure of Frontline Motorcycle Riders Using a Mobile Low-Cost Sensor Platform  COMPASS ’25, July 22-25, 2025, Toronto, ON, Canada

0.018-

0.016

0.014-

0.012

Probability Density

5 1000 2

s 100 2
PM2.5 (ug/m?, Log Scale)

Location —BKK - - CMI

12 s 10 2

(a) Probability Density Function

0.999 0999

Cumulative Probability

102 s 10 2 s 100 2 s 1000 2
PM2.5 (ug/m?, Log Scale)

Location — BKK - -CMI

(b) Cumulative Distribution Function

Figure 9: Probability Density Function (a) and Cumulative Distribution Function (b) illustrating the distribution of pollution

exposure of all riders in Bangkok (BKK) and Chiang Mai (CMI).

The extent of these daily exposures for individual riders is fur-
ther illustrated in Figure 11. The box plots summarizes the PM3 5
concentrations experienced daily by each participant over the 7-
month period. Crucially, the figure highlights that the daily PMy 5
exposure for all riders in both Bangkok and Chiang Mai consis-
tently exceeded World Health Organization’s Air Quality Guide-
lines (AQG) of 15 pg/m® [26], which is indicated by a reference line
on the plot. Secondly, the riders at Chiang Mai experience a higher
maximum PMj 5 exposure compared to Bangkok.

The use of mobile sensors offers significant advantages as it
directly measures the riders’ actual exposure in real-time, capturing
personal exposure levels that may differ from general air quality
trends. In contrast, data from static nodes or government-operated
reference air quality stations serve as a valuable baseline, providing
an overall view of the city’s pollutant levels but without capturing
individual exposure variations.

6.4 Temporal Distribution

This subsection analyzes the temporal distribution of PM3 5 concen-
trations. Figures 12a and 12b depict the diurnal patterns of average
PM3 5 concentrations in Bangkok and Chiang Mai, respectively.
The data spans the hours from 6 a.m. to 8 p.m., corresponding to
the working hours of our volunteer riders. These patterns provide
insights into pollution exposure during different times of the day.

In Bangkok, the highest PM; 5 levels consistently occur during
the early morning hours (6 a.m. - 8 a.m. ), particularly in January
2024. The peak value is observed at 7 a.m. in January 2024 (106.34
pg/m®), indicating significant pollution likely caused by traffic dur-
ing rush hours. PMj 5 levels begin to decline from 9 a.m. onwards
and remain stable during the afternoon (12 - 3 p.m.). However, they
start rising again after 4 p.m. January experienced the highest pol-
lution levels, with a peak of 106.34 pg/m?® at 7 a.m. This is due to
seasonal effects, such as winter inversion, where air ventilation is
limited.

Similarly, in Chiang Mai, PMjy 5 levels are rising in the early
morning hours (6 a.m. - 10 a.m.). The levels then gradually decrease
during midday (10 a.m. - 2 p.m.) before rising again in the evening
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(4 - 8 p.m.). Both March and April are considered the most pol-
luted months, with consistently high levels throughout the day. A
peak value of 183.73 pug/m® was recorded at 9 a.m. in March. This
aligns with the annual "burning season," during which crop residue
burning significantly contributes to air pollution.

The key observation from this analysis is the difference in diurnal
patterns during peak pollution periods. In Chiang Mai (March and
April), PMy 5 levels remain consistently high throughout the day,
whereas in Bangkok (January), PM; 5 levels peak during specific
hours and then decline to levels comparable to other months.

6.5 Health Risk Assessment

To further investigate the impact of PM2 5 on human health, we
adopted the standardized USEPA human health risk assessment
framework for non-cancer effects [25]. This framework evaluates
the ratio of exposure to toxicity, commonly referred to as the Hazard
Quotient (HQ). The HQ is influenced by factors such as exposure
frequency, duration, and pollutant concentration. An HQ value
less than 1 indicates a low risk of adverse health effects, whereas
an HQ value greater than 1 suggests a higher likelihood of non-
carcinogenic health impacts.

HQ = EC 1

Q0= RfC (1)

Here, RfC denotes the inhalation reference concentration, which

serves as a threshold for acceptable exposure. According to the

World Health Organization’s Air Quality Guidelines (AQG), the

average exposure to PMy 5 should not exceed 15 pg/m> [26]. There-

fore, the RfC is set at 15 ug/m3. The EC (Exposure Concentra-

tion) represents the estimated concentration of pollutants inhaled

through the respiratory system, expressed in units of ug/m?>. It is
calculated using the following equation:

_ CAXET x EF X ED
B AT

EC (2

In this equation:
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Figure 10: Comparison of data on particulate matter concentration reported by Static Sensors versus data collected by riders in

Bangkok (a) and Chiang Mai (b). The analysis reveals that the PM; 5 exposure experienced by riders typically exceeds the levels
reported by static stations.
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g + ; + i + ; ; ; ; Table 2 presents the exposure values collected from each rider
50-
0 over the 7-month measurement period. The CA values range from
BKKL BKK2  BKKI  BKKS  BKKS  OMIL  OM2  OMB M CMiS 44.5 to 75.47 pg/m3. The ET parameter was derived from the aver-

Rider

age working hours per day, which varied between 6.23 and 13.86
hours. The EF parameter was calculated based on the total number

. ) ) of working days during the 7-month period (197 days). The ED pa-
period for all riders in both BKK and CMI, exceeds World . . .
rameter was estimated under the assumption that each rider would

Healt3h Organization’s Air Quality Guidelines (AQG) of 15 continue in this occupation for a duration of 10 years.

pg/m’. The result revealed that 6 out of 10 riders exhibited HQ val-
ues greater than 1, indicating a high health risk for riders in both
Bangkok and Chiang Mai. To determine the key parameters that

Figure 11: Daily measurements conducted over a 7-month

e CAisthe concentration of air pollutants (ug/m?), determined affect the Hazard Quotient (HQ), we evaluate the relationship be-
by the average daily PMy 5 exposure for an individual. tween HQ and other factors including PMjy 5 Concentration (CA),
e ET is the exposure time (hours/day), representing the aver- Exposure Time(ET),and Exposure Frequency (EF). The correlation
age number of hours an individual is exposed per day. between HQ - CA, HQ - ET and HQ - EF are 0.35, 0.80 and 0.85 re-
e EF is the exposure frequency (days/year), based on the total spectively. The Exposure Time and Exposure Frequency are the key
working days in a year. parameters affecting the Hazard Quotient (HQ), while the PM3 5
e ED is the exposure duration (years), corresponding to the concentration shows less correlated with HQ. This finding high-
estimated working years. lights the importance of reducing exposure duration and frequency
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Parameters Unit BKK1 BKK2 BKK3 BKK4 BKK5 CMI1 CMI2 CMI3 CMI4 CMI5
PM; 5 Concentration (CA) (,ug/ms) 50.61 4450 43,51 56.12 5391 63.47 7547 5816 58.17 64.10
PM, 5 Concentration from

static sensor (CAszatic) (,ug/m3) 35.1 35.1 35.1 35.1 35.1 60.8 60.8 60.8 60.8 60.8
Exposure Time (ET) (hours/day) 13.86 11.07  8.45 9.99 8.72 8.49 9.68 6.46 6.23 9.47
Exposure Frequency (EF) (days/year) 359 321 252 276 219 309 298 272 263 321
Exposure Duration (ED) (years) 10 10 10 10 10 10 10 10 10 10
Average Time (AT) (hours) 87600 87600 87600 87600 87600 87600 87600 87600 87600 87600
Working Days (days) 194 173 136 149 118 167 161 147 142 173
Hazard Quotient (HQ) - 1.92 1.2 0.71 1.18 0.78 1.27 1.66 0.78 0.73 1.43
Hazard Quotient calculated

from static sensor (HQszatic) - 1.33 0.95 0.57 0.74 0.51 1.21 1.34 0.81 0.76 1.41

Table 2: Exposure Factors and Hazard Quotient Calculation
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Figure 12: Hourly trends of PM; 5 exposure during work
hours in (a) Bangkok and (b) Chiang Mai.

to minimize health risks for riders. Furthermore, the results pre-
sented in Table 2 show that riders working more than 8.49 hours per
day or 276 days per year consistently exhibited HQ values greater
than 1. It is important to note that this assessment considers only
PM3 5 exposure. In reality, these riders are exposed to additional
pollutants, which could further elevate their HQ value.
Furthermore, we examine the scenario in which exposure assess-
ment relies solely on static sensors. To this end, we select static
sensor stations located closest to the participants’ daily routes in
Bangkok and Chiang Mai. The selected sensors are situated in the
city centers, representing common points traversed by all riders dur-
ing their daily commutes. The average air pollution concentrations
measured by these static nodes, denoted as CAgqyic , are 35.1 pg/m?®
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and 60.8 pg/m?® for Bangkok and Chiang Mai, respectively. The cor-
responding hazard quotients, HQs;aric, are reported in Table 2. In
comparison to the hazard quotients derived from mobile sensor
data, notable differences are observed. The number of high-risk rid-
ers, defined as those with hazard quotients exceeding 1, decreases
from 6 to 4 when using static sensor measurements. Specifically,
in Bangkok, the number of high-risk riders declines from 3 to 1,
whereas in Chiang Mali, it remains as 3. These discrepancies un-
derscore that reliance on static sensor data alone is insufficient to
accurately assess individual health risks, highlighting the critical
importance of mobile monitoring in exposure evaluation.

To mitigate the high values of HQ, we simulated scenarios in
which the Exposure Frequency (EF) and Exposure Duration (ED)
were minimized using the following strategies:

1-Hour Break: In this strategy, riders take a one-hour break dur-
ing peak pollution hours each day. This one-hour break is applied
daily throughout the seven-month period. Based on the diurnal
pollution pattern shown in Figure 12, the average peak pollution
periods over a seven-month period were 7:00-8:00 a.m. in Bangkok
and 8:00-9:00 a.m. in Chiang Mai. The one-hour break is imple-
mented daily throughout the seven-month period.

Full Days Off on Consecutive Days: This strategy recom-
mends that riders take multiple full days off over consecutive days
when PMj 5 levels are at their highest. We tested scenarios where
riders took 3, 5, or 7 consecutive days off.

Full Days Off on Selected Peak Days: Similar to the previous
strategy, this approach suggests taking full days off, but instead
of consecutive days, the breaks are distributed across the most
polluted days, which may not occur in a continuous sequence.

Based on the results presented in Figure 10 and Figure 12, the
1-hour break and days-off periods were selected for Bangkok and
Chiang Mai, as detailed in Table 3. To apply these strategies, the
collected PM3 5 samples were excluded according to the chosen
period, and the other exposure factors including CA, ET and EF
were recalculated accordingly.

Figure 13 illustrates the reduction in the Hazard Quotient (HQ)
achieved by various mitigation strategies, compared to the baseline
HQ obtained from measurements. Overall, the 7-Day Peak strategy
is the most effective, reducing HQ values by 7.17% (BKK3) to 15.01%
(CMI1). Conversely, the full days off on consecutive days strategy is
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Strategies Bangkok
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Chiang Mai

1-Hour Break (1 Hour) 7:00-8:00 a.m. daily
Full Days Off on 3 Consecutive Days (3-Day Con) 30 Jan to 1 Feb

Full Days Off on 3 Selected Peak Days (3-Day Peak) 30 Jan, 31 Jan, 15 Feb
Full Days Off on 5 Consecutive Days (5-Day Con) 29 Jan to 2 Feb

Full Days Off on 5 Selected Peak Days (5-Day Peak) 23 Jan, 30 Jan, 31 Jan, 14 Feb, 15 Feb

Full Days Off on 7 Consecutive Days (7-Day Con) 28 Jan to 3 Feb

8:00-9:00 a.m. daily

14 Mar to 16 Mar

15 Mar, 16 Mar, 19 Mar

13 Mar to 17 Mar

7 Mar, 15 Mar, 16 Mar, 19 Mar, 6 Apr
12 Mar to 18 Mar

Full Days Off on 7 Selected Peak Days (7-Day Peak) 9 Jan, 19 Jan, 23 Jan, 30 Jan, 31 Jan, 14 Feb, 15 Feb 7 Mar, 15 Mar, 16 Mar, 19 Mar, 3 Apr, 6 Apr, 7 Apr

Table 3: Selected Period for Implemented Mitigation Strategies

less effective. When comparing strategies with the same number of
days off, the full days off on peak days consistently outperforms the
consecutive days approach. Additionally, the 5-Day Peak strategy
results in a greater HQ reduction than the 7-Day Consecutive (7-
Day Con) strategy for nearly all riders.

On the other hand, the 1-Hour Break strategy proves highly
effective for most riders in Bangkok. For instance, riders BKK1 and
BKK4 experience significant HQ reductions of 8.26% and 7.64%,
respectively, indicating that reducing exposure by just one hour
daily is particularly beneficial for them. This suggests that pollution
exposure in Bangkok is more concentrated during specific hours
(e.g., peak traffic times), making even a short reduction in expo-
sure (1 hour) highly impactful. Moreover, Bangkok riders typically
face peak PMj 5 exposure during high-traffic hours, so reducing
work hours results in a greater relative decrease in HQ. In con-
trast, Chiang Mai experiences more evenly distributed pollution
levels throughout the day, particularly during the burning season
(March-April). As a result, the 1-Hour Break strategy is less effec-
tive compared to taking full days off. An exception is rider BKK5,
who does not benefit from the 1-Hour Break strategy. This is be-
cause BKK5 starts working after the peak pollution period, making
the one-hour reduction ineffective in lowering exposure.
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Figure 13: Comparing the improvement in the Hazard Quo-
tient across different mitigation strategies.

To determine the best mitigation strategy for each city, we must
consider economic losses, specifically the daily wages earned by
riders. Based on the demographic data in Table 1, Bangkok riders
earn approximately 44 USD (1,500 THB) per day, while Chiang Mai
riders earn approximately 20 USD (680 THB) per day. The average
working hours per day for Bangkok and Chiang Mai riders are
10.41 and 8.06 hours (based on data in Table 2), which allows us to
calculate the average hourly wage of both cities as 4.23 USD and
2.48 USD.
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If the 1-Hour Break strategy is implemented, the estimated eco-
nomic loss over the 7-month period would be 652.21 USD for the
Bangkok rider and 393.45 USD for the Chiang Mai rider. These
losses are calculated by multiplying the hourly wage by the number
of average working days (154 days for Bangkok and 158 days for
Chiang Mai).

In comparison, the 7-Day Off strategy would result in a lower
economic loss of 308.82 USD for Bangkok riders and 140.00 USD
for Chiang Mai riders, making it a more cost-effective option than
the 1-Hour Break strategy.

This economic perspective is crucial for assessing the feasibility
and impact of different mitigation strategies. Ultimately, each rider
can select the most suitable approach based on their work routine,
balancing health benefits and economic loss.

7 Discussion

We developed MobileSense, a low-cost mobile sensing platform for
real-time air quality monitoring among frontline motorcycle riders.
Its goal is to provide an accessible tool for measuring actual personal
exposure, particularly for vulnerable groups with limited access to
healthcare due to lower income and long working hours. Unlike
traditional air pollution data, which rely on stationary monitoring
stations often located far from pollution sources, MobileSense cap-
tures on-the-ground exposure levels, bridging the gap in accurate
human pollution assessment. The platform has demonstrated sta-
bility in challenging environments, including extreme heat, rain,
and high levels of pollution, which sustains long-term operation.
System failures primarily stem from mobile sensing nodes, those
include losing Internet connectivity or frequent network handovers
due to high-speed driving. Most glitches were automatically re-
solved through our self-recovery function; otherwise, alerts were
sent to riders prompting a hard reset. This was a key reason for
developing our own platform instead of relying on off-the-shelf
low-cost sensors or IoT devices. By customizing the system, we
ensured greater reliability and resilience in real-world conditions.
Poor connectivity represents another major obstacle to our mea-
surements, as it occasionally led to temporary disruptions in data
transmission. However, this issue has been rarely reported in our
measurement. To mitigate the risk of data loss, our nodes were
equipped with local storage (a 64 GB SD card). When connectivity
was lost, the nodes continued to store data locally and automatically
transmitted the buffered data once the connection was restored.
This design effectively provides safeguard against data loss due to
intermittent connectivity.

However, we have to accept that the MobileSense has limitations
in reading accuracy compared to standard air quality stations. As it
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relies on low-cost sensor technology, measurement errors typically
range between 10% and 15%. To mitigate this effect, MobileSense,
like other low-cost sensor platforms, requires calibration and valida-
tion against standard equipment, which significantly improves ac-
curacy. Nevertheless, the advantages of low-cost sensors—including
affordability, portability, and ease of maintenance—often outweigh
minor accuracy limitations. In practice, well-calibrated low-cost
sensors effectively detect pollution trends, capturing rising and
declining patterns. Additionally, averaging methods help filter out
anomalies, ensuring meaningful and actionable data. After weigh-
ing this tradeoff, MobileSense remains a viable solution for mea-
suring air pollution in scenarios where standard equipment is not
feasible.

It is important to highlight that the data collected from Mo-
bileSense has raised significant concerns about the health risks
faced by frontline motorcycle riders. Our analysis of daily pollution
exposure and health risk assessment consistently indicates that
these workers are at high risk. As a mitigation effort, we provided
face masks to all participating riders. However, interviews revealed
that most of the riders wore masks for only a limited period each
day. Many reported that combining a mask with a helmet and face
shield made breathing difficult and impaired their ability to work
comfortably, thereby limiting the effectiveness of this protective
measure. These findings underscore the urgent need for targeted
occupational health interventions and adaptive protective strate-
gies tailored to the specific working conditions of mobile outdoor
workers in highly polluted urban environments.

Beyond air pollution, we also found that many riders exceed
recommended working hours. For instance, a rider in Bangkok
worked over 13 hours per day, with only three days off in seven
months. Such intense work schedules can lead to long-term health
consequences, including chronic stress and fatigue. To address
this issue, our study proposes strategies to reduce pollution expo-
sure and improve well-being, such as taking short breaks during
the day or scheduling full days off. These measures not only help
limit pollution intake but also provide much-needed recovery time.
However, implementation is challenging, as many riders prioritize
income over health. We hope this study serves as a catalyst for
engaging government agencies, such as the Ministry of Labor and
the Ministry of Public Health, to develop policies that protect this
vulnerable workforce.

8 Conclusion

This paper presents MobileSense, a low-cost mobile sensor platform
designed to monitor air pollution exposure among outdoor workers,
particularly motorcycle riders in urban areas. Over the course of
a seven-month field study in Bangkok and Chiang Mai, Mobile-
Sense successfully collected real-time PM; 5 data, offering critical
insight into riders’ personal exposure levels. Our findings reveal
that PM3 5 exposure measured by mobile sensors is significantly
higher than that recorded by low-cost static sensors deployed in
the cities. As a result, motorcycle riders experience extreme PM; 5
exposure, exceeding WHO-recommended limits, even during low-
pollution seasons. To assess the associated health risks, we applied
the Hazard Quotient (HQ) method proposed by the USEPA, which
classified 6 out of 10 riders as high-risk. To mitigate these risks,
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we propose three exposure reduction strategies; 1)A daily 1-hour
break during peak pollution hours, 2) Full days off on consecutive
high-pollution days (3, 5, or 7 days), and 3) Full days off on peak
pollution days, which , which do not necessarily have to be con-
secutive. As is widely recognized, the most sustainable approach
to minimizing exposure is the reduction of PM; 5 concentrations.
However, achieving substantial reductions remains challenging.
Therefore, limiting exposure duration and frequency is crucial for
mitigating health risks among riders. Our analysis suggests that the
1-hour break strategy is more effective for Bangkok riders due to
pollution being concentrated during peak hours. In contrast, taking
full days off on peak pollution days is more suitable for Chiang Mai
riders, where pollution levels remain consistently high throughout
the day.

For future research, we aim to perform high-resolution spatial
analyses of PMj 5 concentrations to identify and map pollution
hotspots across both cities, providing a foundation for targeted mit-
igation strategies. We also plan to further advance MobileSense’s
capabilities, enabling broader deployment across a range of high-
risk occupational groups and urban environments, particularly in
developing countries where air quality monitoring remains limited.
Moreover, we envision integrating medical evaluations into our
study by conducting longitudinal health assessments of our volun-
teer cohort, offering critical insights into the long-term impacts of
chronic air pollution exposure.
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